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The localization performances of a two-step spatio-temporal goniometry are estimated thought the determination of the 
relevant parameters that introduce localization errors. A statistical error estimation method is validated by handling a 
simple two-sensor antenna in a 2D localization and applied to the 3D goniometry with a 3D antenna. 
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This work was motivated by the increasing need for 
acoustic localization systems. Various localization 
systems were implemented during a PhD. These include 
localization of snow avalanches, artillery and supersonic 
aircraft in the infrasound domain, the localization of 
helicopters, civilian aircrafts, speakers and auditorium 
reflections in the audio domain and the localization of 
chirps in the underwater ultrasound domain. 
The “goniometer” is defined as an instrument that 
measures angles. An “acoustic goniometer” is therefore 
a system that measures the direction of arrival (DOA) of 
a sound source, and thus estimates the source direction. 
A goniometer is made up of an antenna, composed of 
several sensors arranged in a particular geometry, and a 
calculation algorithm.  
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The successive implementations of the localization 
algorithms were designed around a common framework, 
based on a two-step spatio-temporal process (Figure 1). 
The temporal step tackles the problem of the Time 
Delay Estimation along the antenna baselines, whereas 
the second step introduces the antenna geometry, in 
order to estimate the Direction of Arrival per se. 
The time delay estimation is a temporal process as it is 
based on the generalized cross-correlation techniques. 
On the other hand, the localization module introduces 
the antenna geometry and size, the speed of sound and 
is a spatial process. 
The objective of this work is to estimate the 
performances of the localization module. The qualities 
and inconveniencies of this two-step method will be 
highlighted by listing every relevant parameters of the 
goniometry and by studying their influence on the 
performances. First, a theoretical approach will handle 
the simple case of the DOA determination with 2 
sensors (one baseline).  This two-dimension case will 
be solved by using both mathematical and statistical 
methods. Next, the three-dimension case will be 

handled with the previously validated statistical 
approach. 
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Figure 1. goniometer schematic diagram 
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The simple case of 2D goniometry with a pair of 
sensors is represented in Figure 2.  
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Figure 2. 2D propagation model 

In the far-field case, the DOA is completely defined by 
the angle θ and is obtained by the relation : 
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To observe the robustness of the DOA estimation in the 
presence of the parameter errors {δc,δd,δτ}, (1) was 



 

developed into a Taylor Series around the nominal 
values {c0,d0 τ 0}. The resulting nominal DOA is given 
by  

( )� � � �
� ���θ θ τ=  (2) 

First, each parameter is separately contaminated by 
errors. In a second approach, all parameters are supposed 
noisy, which implies the introduction of a multi-
variable Taylor development.  
If we consider that the array geometry and the speed of 
sound are precisely known (δd=0 and δc=0), the error 
on the DOA is only due to the imprecision on the Time 
Delay Estimation (TDE) and can be expressed by 
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(3) 

The determination of the upper limit of the error on the 
DOA is very important to evaluate the overall 
performance. If we admit that the precision of the TDE 
is better than 5% of the maximum lag (physically 
expectable τ max=d0/c0), then we can calculate the DOA 
error δθ as a function of the nominal DOA θ0. The next 
figure presents the mathematical results described by (3) 
compared with a statistical approach. Indeed, by 
simulating noisy TDE and by calculating the final DOA 
error over thousands of attempts, the statistically 
estimated errors on the DOA present an upper limit 
theoretically identical to the mathematical approach. 
The problem is expressed as:  

find  δθ = f(δτ ) 
with  d0=1m, δd=0 , c0=342ms-1, δc=0 
for  θ0∈ [0,90°] , δτ  ∈ [-0.05 d0 / c0, 0.05 d0 / c0] 

For reasons of symmetry, the region θ ∈ [0,90°] is 
sufficient to describe all the phenomena. 
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Figure 3. DOA error bound as a function of the DOA 

angle θ0 for δd=0, δc=0, |δτ |< 0.05 τ max 

The analysis of Figure 3 reveals that the goniometry for 
sources located in the region around the Broadside 
direction, performs much better than for sources located 
in the End-Fire region. In other terms, the DOA 
sensibility to TDE errors is much greater for sources 
aligned with the baseline. The DOA performances 

remain acceptable for a DOA between –50° and 50°, and 
decrease seriously beyond to reach a maximum value of 
20° for θ0=90°. The saturation of the errors between 70° 
and 90° observed in the statistical approach, is due to 
elimination of goniometry resulting in complex DOA 
(sin(θ)>1). The complex DOA values, corresponding to 
TDE greater than the maximum physical time delay, are 
set equal to 90°. The mathematical approach does not 
take this physical limitation into account. Finally, the 
slight differences observed around θ0=70° are due to 
finite length of the Taylor series expansion used for the 
mathematical model (Order 4). 
A similar development can be carried out in case of 
inaccuracy either on the speed of sound or on the sensor 
location (see Figure 4 and Figure 5). The three 
parameters influence the DOA errors in quite a similar 
fashion. Yet, an important difference is observed for the 
Broadside direction: in the particular case of θ0=0°, 
errors on the speed of sound and sensor location do not 
have any influence on the DOA (δθ = 0). 

� �� �� �� �� �� �� �� �� ��
�

�

��

��

��

��

θ
�
� !"

δθ
�
�
#�
 !
"

$��%�������
�����������

 
Figure 4. DOA error bound as a function of the 

DOA for δd=0, |δc|< 17.1 ms-1 (0.05*c0), δτ  = 0 
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Figure 5. DOA error bound as a function of the 

DOA for |δd| < 5cm (0.05*d0), δc=0, δτ=0 

In the second case, every parameters are contaminated 
by noise (Figure 6). The mathematical error bound is 
obtained by calculating the three-variable Taylor series 
expansion given by  
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(4) 

When all the parameters are noisy, the overall influence 
on the DOA error is more than the sum of each 
contribution. As the variables are closely linked (1) 
cross terms have to be considered. 

� �� �� �� �� �� �� �� �� ��
�

�

��

��

��

��

θ
�
� !"

δθ
�
�#
� 
!
"

$��%����� ��

�����������

 
Figure 6. Upper limit of DOA errors as a function 

of the DOA for |δd| < 5cm (0.05*d0), |δc|< 17.1 ms-

1 (0.05*c0), |δτ |< 0.15 ms (0.05*d0 /c0) 

When performing a two-sensor localization, it appears 
clearly that the performances fall when the DOA 
diverges from the Broadside direction. In the case of 
antenna with more than 2 sensors, the goniometer 
should be considered as a combination of several sensor 
pairs with different behaviors. 
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IV.1. Antenna geometry and localization errors 
The 3D localization requires at least four sensors located 
in 3D space. By comparison with the two-sensor case, 
it is easy to imagine that the localization performances 
will differ according to the antenna geometry and the 
DOA. In order to quantify the performance disparities, 
the singular value decomposition of the relative sensor 
position matrix is performed. The resulting 3D 
subspace represents the intrinsic antenna geometry. 
When the singular values are equal, the antenna presents 
“revolution symmetry”, denoting an isotropic approach. 
The DOA errors are almost independent of the DOA. 
The Tetrahedral or the Cube with adequate baseline 
selection presents this quality. If the condition is not 
fulfilled, the DOA performances exhibit disparities in 
relation to the singular values range. 
For example, the DOA error bound was calculated for 
each direction with a four-sensor cube base antenna 
(Figure 7). The relative bound errors are set to |δd|/dmax 
< 0.05, |δτ |/τ max < 0.05 and the localization is 
performed with all six baselines. 
The best cases correspond to the DOA presenting the 
lowest DOA error bound: the direction with azimuth = 

180° and elevation = 35.26° is one optimum direction. 
From the source point of view, the antenna has its 
maximum of extension (left figure). The worst case can 
be observed, for example, in the DOA with azimuth = 
135° and elevation = 45°, where the antenna shows the 
smallest extension (see right figure). The performance 
disparities are, as a first approximation, equal to the 
ratio between the highest and lowest singular values. In 
this case, the singular values are [.5 .5 .25] and the 
ratio=2. 
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Figure 7. DOA errors bound with |δd|/dmax < 

0.05, |δτ |/τ max < 0.05 

Source view point 
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Azimuth = 180° 

Elevation = 35.26° 
Best Case 
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Azimuth = 135° 
Elevation = 45° 

Worst Case 
 
IV.2. Influence of the speed of sound estimation 
Despite the fact that the celerity is essential to the 
knowledge of the sound field, calculations show that 
the DOA can be totally independent of estimation errors 
on the speed of sound. This requires the array to be 
composed of at least 4 microphones located in 3-D 
space (dimension of the subspace defined by the array 
equal to three). It can be demonstrated that the errors on 
the azimuth are independent of the estimation of speed 
of sound. Similar argumentation can be established for 
the elevation.  
 
IV.3. Influence of the sensors position estimation 
In section III, it was demonstrated that the DOA error 
varies as a function of the DOA when the relative 
position of the sensors are contaminated with noise. In 
order to perform the same analysis for a complex 3D 
geometry antenna, Monte Carlo simulations were 
implemented to quantify the influence of the 
positioning precision on the DOA errors. 

Best 
Case 

Worst 
Case 



 

The simulations are carried out with the 4 sensor cubic 
base antenna. Three configurations were investigated 
(see Figure 8): the first performs the localization by 
using the 3 baselines of the same length (referred in the 
legend as “3 independent pairs”), the second and third 
are using all 6 baselines in the best case DOA and in 
the worst case DOA defined in section IV.1. The main 
remark is that the use of all baselines can reduce 
performance in some DOAs (Figure 9). The 
goniometry, which is almost DOA independent in the 
“3 pairs” localization (identical singular values), 
presents performance disparities when increasing the 
number of TDE. According to the DOA area to cover, 
extra precision can be obtained by increasing 
computation. 
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Figure 8. DOA error bound in the presence of 

sensors position relative error (4 sensors cubic base) 
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Figure 9. DOA error bound in the presence of 
sensors position relative error (4 sensors cubic 

base – 6 pairs) |δd|/dmax < 0.1 

 
IV.4. Influence of the Time Delay Estimation 
The influence of TDE errors on the localization is very 
close to the positioning errors effect, in terms of 
sensitivity and in terms of performance difference, 
according to the antenna subspace singular value 
disparities (Figure 10 et Figure 11). 
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Figure 10. DOA error bound in the presence of 

TDE relative error (4 sensors cubic base) 
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Figure 11. DOA error bound in the presence of TDE 

relative error (4 sensors cubic base) |δτ |/τ max<0.1 

 
V. CONCLUSION 
 
In order to estimate the potential performances of a 
goniometry based upon a two-step process (spatio-
temporal), the localization errors were studied as a 
function of the estimation errors on the sensor 
positions, of the estimation error on the sound speed 
and of the time delay estimation errors. 
The results of the statistical simulations give a rough 
idea of the performances that can be achieved, and 
shows that the antenna geometry, the relative position 
of the source to the antenna, and the baseline selection 
for the time delay estimation are relevant parameters 
that modify the localization performances.  
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